domingo, 27 de mayo de 2012

Tipos de Comunicación


COMUNICACIÓN SIMPLEXEn una comunicación simplex existe un solo canal unidireccional: el origen puede transmitir al destino pero el destino no puede comunicarse con el origen. Por ejemplo, la radio y la televisión.
Es aquel en el que una estación siempre actúa como fuente y la otra siempre como colector. Este método permite la transmisión de información en un único sentido. 


Método Semidúplex. Es aquel en el que una estación A en un momento de tiempo, actúa como fuente y otra estación corresponsal B actúa como colector, y en el momento siguiente, la estación B actuará como fuente y la A como colector. Permite la transmisión en ambas direcciones, aunque en momentos diferentes. Un ejemplo es la conversación entre dos radioaficionados, pero donde uno espera que el otro termine de hablar para continuar el diálogo.

Método Dúplex. En el que dos estaciones A y B, actúan como fuente y colector, transmitiendo y recibiendo información simultáneamente. Permite la transmisión en ambas direcciones y de forma simultánea. Por ejemplo una conversación telefónica. 

Half-Duplex y Full duplex Cuando dos equipos se comunican en una LAN, la información viaja normalmente en una sola dirección a la vez, dado que las redes en bana base usadas por las redes LAN admiten solo una señal. Esto de denomina comunicación half-duplex. En cambio dos sistemas que se pueden comunicar simultaneamente en dos direcciónes estám operando en modo full-duplex. El ejemplo más comun de una red full-duplex es, una vez mas, el sistema telefónico. Ambas parte pueden hablar simultaneamente durante una llamada telefónica y cada parte puede oír a la otra a la vez. Un ejemplo de un sistema de comunicación half-duplex es la radio, como ser los radiotransmisores, en los que solo una parte puede transmitir a la vez, y cada parte debe decir “cambio”, para indicar que ha terminado de transmitir y está pasando de modo transmisión a modo recepción. 

Modos de transmisión de datos Según el sentido de la transmisión podemos encontrarnos con tres tipos diferentes: 
Simplex: 
Este modo de transmisión permite que la información discurra en un solo sentido y de forma permanente, con esta formula es difícil la corrección de errores causados por deficiencias de línea. Como ejemplos de la vida diaria tenemos, la televisión y la radio

Tipos de Señales


Señal Analogica

Una señal analógica es un tipo de señal generada por algún tipo de fenómeno electromagnético y que es representable por una función matemática continua en la que es variable su amplitud y periodo (representando un dato de información) en función del tiempo. Algunas magnitudes físicas comúnmente portadoras de una señal de este tipo son eléctricas como la intensidad, la tensión y la potencia, pero también pueden ser hidráulicas como la presión, térmicas como la temperatura, mecánicas, etc. La magnitud también puede ser cualquier objeto medible como los beneficios o pérdidas de un negocio.

Desventajas de las señales analogicas en términos electrónicos
  • Las señales de cualquier circuito o comunicación electrónica son susceptibles de ser modificadas de forma no deseada de diversas maneras mediante el ruido, lo que ocurre siempre en mayor o menor medida.
  • La gran desventaja respecto a las señales digitales, es que en las señales analógicas, cualquier variación en la información es de difícil recuperación, y esta pérdida afecta en gran medida al correcto funcionamiento y rendimiento del dispositivo analógico.



    Una señal digital

     
    Es un tipo de señal generada por algún tipo de fenómeno electromagnético en que cada signo que codifica el contenido de la misma puede ser analizado en término de algunas magnitudes que representan valores discretos, en lugar de valores dentro de un cierto rango. Por ejemplo, el interruptor de la luz sólo puede tomar dos valores o estados: abierto o cerrado, o la misma lámpara: encendida o apagada (véase circuito de conmutación).
    Los sistemas digitales, como por ejemplo el ordenador, usan lógica de dos estados representados por dos niveles de tensión eléctrica, uno alto, H y otro bajo, L (de High y Low, respectivamente, en inglés). Por abstracción, dichos estados se sustituyen por ceros y unos, lo que facilita la aplicación de la lógica y la aritmética binaria. Si el nivel alto se representa por 1 y el bajo por 0, se habla de lógica positiva y en caso contrario de lógica negativa.


    abe mencionar que además de los niveles, en una señal digital están las transiciones de alto a bajo o de bajo a alto, denominadas flanco de subida o de bajada, respectivamente. En la siguiente figura se muestra una señal digital donde se identifican los niveles y los flancos. Señal digital: 1) Nivel bajo, 2) Nivel alto, 3) Flanco de subida y 4) Flanco de bajada. Señal digital: 1) Nivel bajo, 2) Nivel alto, 3) Flanco de subida y 4) Flanco de bajada.

Tipos de Transmición


En las redes de ordenadores, los datos a intercambiar siempre están disponibles en forma de señal digital. No obstante, para su transmisión podemos optar por la utilización de señales digitales o analógicas. La elección no será, casi nunca, una decisión del usuario, sino que vendrá determinada por el medio de transmisión a emplear.
No todos los medios de transmisión permiten señales analógicas ni todos permiten señales digitales. Como la naturaleza de nuestros datos será siempre digital, es necesario un proceso previo que adecue estos datos a la señal a transmitir.



Transmición Digital

Para obtener la secuencia que compone la señal digital a partir de los datos digitales se efectúa un proceso denominado codificación. Existen multitud de métodos de codificación, mencionaremos seguidamente los más usuales.
NRZ (No Return to Zero): Es el método que empleamos para representar la evolución de una señal digital en un cronograma. Cada nivel lógico 0 y 1 toma un valor distinto de tensión.
NRZI (No Return to Zero Inverted): La señal no cambia si se transmite un uno, y se invierte si se transmite un cero.
RZ (Return to Zero): Si el bit es uno, la primera mitad de la celda estará a uno. La señal vale cero en cualquier otro caso.
Manchester: Los valores lógicos no se representan como niveles de la señal, sino como transiciones en mitad de la celda de bit. Un flanco de bajada representa un cero y un flanco de subida un uno.
Manchester diferencial: Manteniendo las transiciones realizadas en el método Manchester, en este método introduce la codificación diferencial. Al comienzo del intervalo de bit, la señal se invierte si se transmite un cero, y no cambia si se transmite un uno.


Transmición Analogica

Al proceso por el cual obtenemos una señal analógica a partir de unos datos digitales se le denomina modulación. Esta señal la transmitimos y el receptor debe realizar el proceso contrario, denominado demodulación para recuperar la información. El módem es el encargado de realizar dicho proceso. Algunos esquemas simples de modulación son:
FSK (Modulación por desplazamiento de la frecuencia): Se modifica la frecuencia de la portadora según el valor de bit a transmitir.
ASK (modulación por desplazamiento de la amplitud): En esta técnica no se modifica la frecuencia de la portadora sino su amplitud. Los dos valores binarios se representan mediante diferentes niveles de amplitud de esta señal.

PSK (Modulación por desplazamiento de fase): La frecuencia y la amplitud se mantiene constantes y se varía la fase de la portadora para representar los niveles uno y cero con distintos ángulos de fase.


Medios de Transmición




Pares trenzados.• Descripción Física.
Se trata de dos hilos conductores de cobre envueltos cada uno de ellos en un aislante y trenzado el uno alrededor del otro para evitar que se separen físicamente, y sobre todo, para conseguir una impedancia característica bien definida. Al trenzar los cables, se incrementa la inmunidad frente a interferencias electromagnéticas (interferencias y diafonía), dado que el acoplamiento entre ambos cables es mayor, de forma que las interferencias afectan a ambos cables de forma más parecida. Al cruzar los pares de hilos se consigue reducir el crosstalk existente entre ellos, así como el campo creado alrededor de los mismos, dado que la corriente inducida sobre cada uno de los cables se ve prácticamente cancelada por la corriente que circula por el otro hilo (de retorno) del par.
• Tipos de Trenzado.
o Existen dos tipos de par trenzado:
 UTP: Unshielded Twisted Pair (Par trenzado sin apantallar). Muy sensible a interferencias, tanto exteriores como procedentes de pares adyacentes. Es muy flexible y se suele utilizar habitualmente en telefonía. Su impedancia característica es de 100 ohmios. La norma EIA/TIA 568 los divide en varias categorías, destacando:
 Categoría 3: velocidad de transmisión de 16 MHz a 100 m de distancia máxima.
 Categoría 5: velocidad de transmisión de 100 MHz a 100m de distancia máxima.
 STP: Shielded Twisted Pair (Par trenzado apantallado).Cada par individual va envuelto por una malla metálica, y a su vez el conjunto del cable se recubre por otra malla, haciendo de jaula de Faraday, lo que provoca que haya mucha menos diafonía, interferencias y atenuación. Se trata de cables más rígidos y caros que el UTP. El STP que estandariza EIA/TIA 568 es un cable de impedancia característica de 50 ohmios y que actúa a una frecuencia de 300 MHz. Los conectores que se usan suelen ser RJ45 metálico y hermafrodita.



Cable coaxial.

Las señales eléctricas de alta frecuencia circulan por la superficie exterior de los conductores, por lo que los pares trenzados y los cables de pares resultan ineficientes. El efecto de las corrientes de superficie se traduce en que la atenuación se incrementa con la raíz cuadrada de la frecuencia.
•Descripción Física.
Consiste en dos conductores cilíndricos concéntricos, entre los cuales se coloca generalmente algún tipo de material dieléctrico (polietileno, PVC). Lleva una cubierta protectora que lo aísla eléctricamente y de la humedad. Los dos conductores del coaxial se mantienen concéntricos mediante unos pequeños discos. La funcionalidad del conductor externo es hacer de pantalla para que el coaxial sea muy poco sensible a interferencias y a la diafonía.
Los cables coaxiales se utilizan para transmisión de datos a alta velocidad a distancias de varios kilómetros, es decir, se cubren grandes distancias , con mayores velocidades de transmisión y ancho de banda, así como la conexión de un mayor número de terminales. Características generales:
o La respuesta en frecuencia es superior a la del par trenzado. Hasta 400 MHz.
o Tiene como limitaciones:
 - Ruido térmico.
 - Intermodulación.
o Necesita amplificadores más frecuentemente que el par trenzado.




Fibra óptica.

 Descripción Física.
Es una fibra flexible, extremadamente fina, capaz de conducir energía óptica (luz). Para su construcción se pueden usar diversos tipos de cristal; las de mayor calidad son de sílice, con una disposición de capas concéntricas, donde se pueden distinguir tres partes básicas: núcleo, cubierta y revestimiento. El diámetro de la cubierta suele ser de centenas de µm (valor típico: 125 µm), el núcleo suele medir entre 2 y10 µm, mientras que el revestimiento es algo mayor: decenas de mm. Para darle mayor protección a la fibra se emplean fibras de kevlar.
La transmisión por fibra óptica se basa en la diferencia de índice de refracción entre el núcleo y la cubierta que tiene un índice de refracción menor. El núcleo
transmite la luz y el cambio que experimenta el índice de refracción en la superficie de separación provoca la reflexión total de la luz, de forma que sólo abandona la fibra una mínima parte de la luz transmitida. En función de cómo sea el cambio del valor del índice de refracción las fibras se dividen en:
o Fibras ópticas de índice a escala (stepped-index): donde el cambio es muy abrupto.
o Fibras ópticas de modo gradual (graded-index o gradex): que experimentan un cambio gradual parabólico.
• Tipos.
Se distinguen tres tipos de transmisión: monomodo, multimodo de índice gradual y multimodo de salto de índice.
En la propagación monomodo la luz recorre una única trayectoria en el interior del núcleo, proporcionando un gran ancho de banda. Para minimizar el número de reflexiones en la superficie entre el núcleo y el recubrimiento, el núcleo debe ser lo más estrecho posible. Esto hace que su fabricación sea muy complicada, por lo que surgieron las fibras multimodo, cuyo diámetro es mucho mayor. También es mayor el número de trayectorias de la luz resultantes de las distintas reflexiones
Hay tres tipos de fibras ópticas:
o Fibras multimodo de índice de escala: el diámetro del núcleo está entre los 50 los 60mm, pero puede llegar a los 200mm. Mientras que el diámetro del recubrimiento suele acercarse al tamaño estándar de los 125mm. la dispersión es elevada. Sus aplicaciones se limitan a la transmisión de datos a baja velocidad o cables industriales de control.
o Fibras monomodo de índice de escala: diámetro de entre 1 y 10 mm, recubrimiento de 125mm de diámetro. La dispersión es baja y se consiguen anchos de banda de varios GHz/Km.
o Fibras multimodo de índice gradual: el diámetro del núcleo está entre los 50 y lo 60mm, y el del recubrimiento en 125mm. Aunque existen muchos modos de propagación, la velocidad es mayor que en las fibras multimodo de índice en escala, lo que reduce su dispersión.



Medios NO Guiados.

 La radiocomunicación puede definirse como Telecomunicación realizada por medio de las ondas eléctricas. La Unión Internacional de Telecomunicaciones (UIT), define las ondas radioeléctricas como las ondas electromagnéticas que se propagan por el espacio sin guía artificial y cuyo límite superior de frecuencia se fija, convencionalmente, en 3.000GHz.
La radiocomunicación que hace uso de elementos situados en el espacio, se denomina radiocomunicación espacial. Toda radiocomunicación distinta de la espacial y de la radioastronomía, se llama radiocomunicación terrenal.
La técnica de la radiocomunicación consiste en la superposición de la información que se desea transmitir en una onda electromagnética soporte, llamada portadora. La inserción de esa información constituye el proceso denominado modulación
Existen dos tipos fundamentales de transmisión inalámbrica:
• Omnidireccionales: La antena transmisora emite en todas las direcciones espaciales y la receptora recibe igualmente en toda dirección.
• Direccionales: La energía emitida se concentra en un haz, para lo cual se requiere que la antena receptora y transmisora estén alineadas. Cuanto mayor sea la frecuencia de transmisión, es más factible confinar la energía en una dirección.
• dirección.
El espectro de frecuencias está dividido en bandas de la siguiente manera:
Símbolo Nombre Frecuencia
VLF Very Low Frecuency 3-30KHz
LF Low Frecuency 30-300KHz
MF Mid Frecuency 300-3000KHz
HF High Frecuency 3-30MHz
VHF Very High Frecuency 30-300MHz
UHF Ultra High Frecuency 300-3000MHz
SHF Super High Frecuency 3-30GHz
EHF Extra High Frecuency 30-300GHz
300-3000GHz
Básicamente se emplean tres tipos de ondas del espectro electromagnético para comunicaciones:
• Microondas: 2 GHz - 40 GHz. Muy direccionales. Pueden ser terrestres o por satélite.
• Ondas radio: 30 MHz - 1 GHz. Omnidireccionales.
• Infrarrojos: 3•1011 - 200THz.





Microondas terrestres.La antena típica de este tipo de microondas es parabólica y tiene unos tres metros de diámetro; el haz es muy estrecho por lo que las antenas receptoras y emisora deben estar muy bien alineadas. A cuanta mayor altura se sitúen la antena mayor la facilidad para esquivar obstáculos. La distancia que cubre un único radioenlace de microondas viene dada por la expresión:d = 7.14 • (k•h)½.
h = altura de la antena (m)
k = 1 si no consideramos los efectos de la gravedad. Generalmente se toma k = 3/4.
Para cubrir distancias mayores se usan radioenlaces concatenados. Aplicaciones:
o La transmisión a larga distancia, ya que requiere menos repetidores que el cable coaxil, aunque por contra necesita que las antenas están alineadas. El uso de microondas es frecuente en aplicaciones de TV y voz.
o En enlaces punto-a-punto sobre distancias cortas, como circuitos cerrados de televisión, interconexión de redes locales y transmisión entre edificios.
Las microondas cubren una parte importante del espectro, de los 2 a los 40 GHz; el ancho de banda potencial y la velocidad de transmisión aumentan con la frecuencia, por lo que sus prestaciones son muy buenas y tienen múltiples aplicaciones como la transmisión de vídeo y de voz.
Banda (GHz) Ancho de Banda (MHz) Régimen de transmisión (Mbps)
2 7 12
6 30 90
11 40 90
18 220 274
El problema fundamental de este tipo de comunicación es la atenuación, que dependerá de la longitud de onda que estemos utilizando, así como de las condiciones meteorológicas: por ejemplo a partir de los 10 MHz aumenta mucho la atenuación a causa de la lluvia. La expresión general de la atenuación con la distancia es:
L(dB) = 10 log ( 4d/)2
Además se dan problemas de interferencia entre unas y otras emisiones, por lo que es necesario regular las bandas
4-6 (GHz) Transmisión a larga distancia
12 GHz Directos
22 GHz Televisión por cable
Microondas por satélite.
El satélite se comporta como una estación repetidora que recoge la señal de algún transmisor en tierra y la retransmite difundiéndola entre una o varias estaciones terrestres receptoras, pudiéndo regenerar dicha señal o limitarse a repetirla. Las frecuencias ascendente y descendente son distintas: fasc < fdesc. Para evitar interferencias entre satélites está normalizada una separación entre ellos de un mínimo de 3º (en la banda de la 12/14Ghz) o 4º (4/6GHz).
Ascendente (GHz) Descendente (GHz) Ancho de banda (MHz)
4 6 500
12 14 500
19 29 2.500
El rango de frecuencias óptimo para la transmisión comprende 1-10 GHz.
Por debajo de 1 GHz aparecen problemas debidos al ruido solar, galáctico y atmosférico.
Por encima de 10 GHz, predominan la absorción atmosférica así como la atenuación debida a la lluvia. Cada satélite opera en una banda de frecuencia determinada conocida como Transpondedor.
Entre las aplicaciones figuran tanto enlaces punto-punto entre estaciones terrestres distantes como la difusión:
o Difusión de TV: el carácter multidestino de los satélites los hace especialmente adecuados para la difusión, en particular de TV, aplicación para la que están siendo ampliamente utlizados.
o Telefonía: los satélites proporcionan enlaces punto-a-punto entre centrales telefónicas en las redes públicas de telefonía. Es el medio óptimo para enlaces internacionales con un alto grado de utilización, y tecnológica y económicamente es competitivo con otros tipos de enlaces internacionales.
o Redes privadas: la capacidad del canal de comunicaciones es dividido en diferentes canales de menor capacidad que se alquilan a empresas privadas que establecen su propia red sin necesidad de poner un satélite en órbita.

Ondas de Radio. Se caracterizan por ser omnidireccionales, por lo que no necesitaremos antenas parabólicas. Utilizarán la banda comprendida entre 30 MHz - 1GHz, para transmitir señales FM, TV (UHF, VHF), datos…
Este rango de frecuencias es el más adecuado para transmisiones simultáneas (difusión,…). Las perturbaciones que sufriremos en este tipo de comunicaciones son provocadas por las reflexiones que se producen tanto en la tierra como en el mar, debidas a interferencias multitrayecto.
La distancia cubierta por el enlace vendrá dada por:
o d = 7.14 • (k•h)½.
h = altura de la antena

 (m)
k = 1 si no consideramos los efectos de la gravedad. Generalmente se toma k = 3/4.
Para cubrir distancias mayores se usan más radioenlaces concatenados.
De igual forma la atenuación:
o L(dB) = 10 log ( 4d/)2
Infrarrojos.Características fundamentales:
o Reflexión directa.
o Utilización de transductores que modulan la luz infrarroja no coherente. Deberán estar alineados o tener una reflexión directa.
o No pueden atravesar obstáculos.
o Rapidez en la instalación, ya que no es necesario tener ningún permiso.
o Imposibilidad de establecer enlaces en medios abiertos debido al cambio de las condiciones climatológicas, que pueden actuar a modo de obstáculos

Concepto de Red


El término genérico "red" hace referencia a un conjunto de entidades (objetos, personas, etc.) conectadas entre sí. Por lo tanto, una red permite que circulen elementos materiales o inmateriales entre estas entidades, según reglas bien definidas.
  • red: Conjunto de equipos y dispositivos periféricos conectados entre sí. Se debe tener en cuenta que la red más pequeña posible está conformada por dos equipos conectados.
  • redes: implementación de herramientas y tareas para conectar equipos de manera que puedan compartir recursos en la red.

Según el tipo de entidad involucrada, el término utilizado variará:
  • red de transporte: conjunto de infraestructuras y vehículos usados para transportar personas y bienes entre diferentes áreas geográficas.
  • red telefónica: infraestructura usada para transportar señales de voz desde una estación telefónica a otra.
  • red neural: conjunto de neuronas conectadas entre sí.
  • red criminal: conjunto de estafadores complotados (donde hay un estafador, por lo general hay otro).
  • red informática: conjunto de equipos conectados entre sí mediante líneas físicas que intercambian información bajo la forma de datos digitales (valores binarios, es decir valores codificados como una señal que puede representar 0 ó 1).

Obviamente, los artículos que está leyendo en este momento tratan de las redes informáticas.
No existe un sólo tipo de red, ya que históricamente han existido diferentes tipos de equipos que se han comunicado en varios lenguajes diferentes. La necesidad de contar con múltiples tipos de redes también surge de la heterogeneidad de los medios físicos de transmisión que las une, ya sea que los datos se transfieran de la misma manera (por pulsos eléctricos, haces de luz u ondas electromagnéticas) o que utilicen el mismo tipo de medio físico (como un cable coaxial, pares trenzados o líneas de fibra óptica).
Cada capítulo describe las características de los medios físicos de transmisión así como la manera en que los datos se desplazan por la red.

Topologías de Red



La topología de red es la disposición física en la que se conecta una red de ordenadores. Si una red tiene diversas topologías se la llama mixta




Red en anillo
Topología de red en la que las estaciones se conectan formando un anillo. Cada estación está conectada a la siguiente y la última está conectada a la primera. Cada estación tiene un receptor y un transmisor que hace la función de repetidor, pasando la señal a la siguiente estación del anillo.
En este tipo de red la comunicación se da por el paso de un token o testigo, que se puede conceptualizar como un cartero que pasa recogiendo y entregando paquetes de información, de esta manera se evita perdida de información debido a colisiones.
Cabe mencionar que si algún nodo de la red se cae (termino informático para decir que esta en mal funcionamiento o no funciona para nada) la comunicación en todo el anillo se pierde



Red en árbol
Topología de red en la que los nodos están colocados en forma de árbol. Desde una visión topológica, la conexión en árbol es parecida a una serie de redes en estrella interconectadas.
Es una variación de la red en bus, la falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones.
Cuenta con un cable principal (backbone) al que hay conectadas redes individuales en bus.





Red en malla
La Red en malla es una topología de red en la que cada nodo está conectado a uno o más de los otros nodos. De esta manera es posible llevar los mensajes de un nodo a otro por diferentes caminos.
Si la red de malla está completamente conectada no puede existir absolutamente ninguna interrupción en las comunicaciones. Cada servidor tiene sus propias conexiones con todos los demás servidores.





Red en bus
Topología de red en la que todas las estaciones están conectadas a un único canal de comunicaciones por medio de unidades interfaz y derivadores. Las estaciones utilizan este canal para comunicarse con el resto.
La topología de bus tiene todos sus nodos conectados directamente a un enlace y no tiene ninguna otra conexión entre nodos. Físicamente cada host está conectado a un cable común, por lo que se pueden comunicar directamente, aunque la ruptura del cable hace que los hosts queden desconectados.
La topología de bus permite que todos los dispositivos de la red puedan ver todas las señales de todos los demás dispositivos, lo que puede ser ventajoso si desea que todos los dispositivos obtengan esta información. Sin embargo, puede representar una desventaja, ya que es común que se produzcan problemas de tráfico y colisiones, que se pueden paliar segmentando la red en varias partes. Es la topología más común en pequeñas LAN, con hub o switch final en uno de los extremos.



Red en estrella
Red en la cual las estaciones están conectadas directamente al servidor u ordenador y todas las comunicaciones se han de hacer necesariamente a través de él. Todas las estaciones están conectadas por separado a un centro de comunicaciones, concentrador o nodo central, pero no están conectadas entre sí. Esta red crea una mayor facilidad de supervisión y control de información ya que para pasar los mensajes deben pasar por el hub o concentrador, el cual gestiona la redistribución de la información a los demás nodos. La fiabilidad de este tipo de red es que el malfuncionamiento de un ordenador no afecta en nada a la red entera, puesto que cada ordenar se conecta independientemente del hub, el costo del cableado puede llegar a ser muy alto. Su punto débil consta en el hub ya que es el que sostiene la red en uno.



Red Inalámbrica Wi-Fi
Wi-Fi es una marca de la Wi-Fi Alliance (anteriormente la Wireless Ethernet Compatibility Alliance), la organización comercial que prueba y certifica que los equipos cumplen los estándares IEEE 802.11x.
Las nuevas redes sin cables hacen posible que se pueda conectar a una red local cualquier dispositivo sin necesidad de instalación, lo que permite que nos podamos pasear libremente por la oficina con nuestro ordenador portátil conectado a la red o conectar sin cables cámaras de vigilancia en los lugares más inaccesibles. También se puede instalar en locales públicos y dar el servicio de acceso a Internet sin cables.
La norma IEEE 802.11b dio carácter universal a esta tecnología que permite la conexión de cualquier equipo informático a una red de datos Ethernet sin necesidad de cableado, que actualmente se puede integrar también con los equipos de acceso ADSL para Internet.



Red celular
La topología celular está compuesta por áreas circulares o hexagonales, cada una de las cuales tiene un nodo individual en el centro.
La topología celular es un área geográfica dividida en regiones (celdas) para los fines de la tecnología inalámbrica. En esta tecnología no existen enlaces físicos; silo hay ondas electromagnéticas.
La ventaja obvia de una topología celular (inalámbrica) es que no existe ningún medio tangible aparte de la atmósfera terrestre o el del vacío del espacio exterior (y los satélites). Las desventajas son que las señales se encuentran presentes en cualquier lugar de la celda y, de ese modo, pueden sufrir disturbios y violaciones de seguridad.
Como norma, las topologías basadas en celdas se integran con otras topologías, ya sea que usen la atmósfera o los satélites.

Elementos de una Red


Una red de ordenadas consta tanto de hardware como de software. El primero consta de las targetas de red y el cable que las une. Los componentes del software incluyen sistemas operativos, protocolos de comunicación y controladores (drivers) para las targetas de red.

- Targetas de Red: Son adaptadores instalados en el ordenador que ofrecen un punto de conexión a la red.
- Sistema de Cableado: Es el medio que conecta a los equipos que pertenecen a la red.
- Sistema Operativo de Red: Es una red entre iguales se ejecuta el mismo sistema operativo con el soporte de conexión de red incorporada. Este permite que los oyros ordenadores se conectan con el exterior a traves él.

• Servidor de correo electronico: Al que acuden los programas cliente, ofrece servicios como electronico corporativo (interno de red) o extrerno.

• Servidor de base de datos: Una base de datos es un sistema que gestiona la información ordenada por tablas en un ragistro.

• Servidor de copias de seguridad: En sistemas grandes.